

Co-benefits - What Do We/Don't We Know?

- FGD captures most oxidized mercury (Hg²⁺)
- Capture rates high, but 90% ∆Hg not routinely achieved
 - 3 of 18 measurements >90%
 - One site as example
 - 95% Hg2+ at FGD inlet
 - 96% Hg²⁺ "removal"

Ideally → 91.2% Hg removal, but

- 0.4 μg/m³ re-emissions → 86% removal
- Research plans
 - Continue fundamental chemistry work
 - Why re-emissions? How stop?
 - · How direct Hg to desired discharge stream?
 - Seek patterns from data for SCR/FGD sites with <90% removal
 - Evaluate options to enhance removal

Power Research Institute Inc. All rights reserved

Re-emission Inhibitors for Enhanced Mercury Control

- 2004 options = B&W's NaHS and DeGussa's TMT-15
- B&W additive tested by DOE-NETL → mixed results, so EPRI investigated TMT-15
- Pilot-scale inconclusive, full-scale (2 sites) not effective, complex behavior
 - Periods of low and periods of high re-emissions
 - Complex behavior with Ca, Mg in FGD liquid
- Now testing other additives e.g., Nalco, PRAVO, other
- Expect related chemistry for (a) re-emissions and
 (b) Hg partitioning to liquid vs solid discharge streams

© 2005 Electric Power Research Institute, Inc. All rights reserved

Focus of EPRI Research

(w/DOE, EPA, Members, Contractor/Supplier Partners)

Address issues

- SO₃, temperature variations, coal variations, hopper fires and evacuation
- Cost-acceptable options for 90% compliance
- PM emission increases (NSR?) quantify, understand, mitigate
- Confidence in technology expand experience base to increase
- Improve process, reduce impacts, lower costs
 - Upper sorbent limit for ash use in concrete
 - Novel sorbents for high T or high SO₃; with low ash impact or easily separable from ash
 - Novel technologies

© 2005 Electric Power Research Institute, Inc. All rights reserved

User Challenges for Commercial, Compliant Application

- Limits set at level of best performers
 - Data show range of performance
 - Reasons for site-to-site differences often not understood or predictable
- Are guarantees comparable to other APCDs?
 - If site-specific, not consistent with uniform limit
 - Are they comprehensive?
 - If ACI, more than ∆Hg vs ACI rate?
 - If co-benefits, at what SV, ∆NOx, L/G, ∆P, etc.
- High ΔHg requirements → very low Hg emissions.
 Can we measure accurately?
- Mercury compliance measurement still WIP
- The unexpected?

Power Research Institute Inc. All rights reserved

Questions?

© 2005 Electric Power Research Institute, Inc. All rights reserve

15

Remaining Challenges for Power Plants

Lack of long-term balance of plant impact studies

- Slagging, corrosion, air heater pluggage
- Impact on baghouse, ESP, scrubber operation and emissions
- Halogen and trace metal accumulation in scrubbers and flyash
- Handling of fly ash and scrubber waste streams, potential for recycle-reuse of fly ash and sorbents, recovering and fixing mercury

• Small increases in stack PM can trigger NSR

- <0.003 lb/MBtu PM emissions (0.03 lb/MBtu NSPS standard)
- Baseline PM emissions with no carbon injection have variations > potential increases with carbon injection

© 2005 Electric Power Research Institute, Inc. All rights reserved

16

Glossary

ACI Activated Carbon Injection

APCD Air Pollution Control Device

BCA Boiler Chemical Additive to promote mercury oxidation

CTC Chemically-treated (activated) carbon [e.g., bromine impregnated]

DOE-NETL U.S. Department of Energy – National Energy Technology Laboratory

ESP Electrostatic Precipitator for particulate (fly ash) control

FF Fabric filter (aka baghouse) for particulate control

FGD Flue gas desulfurization (aka scrubber) for SO₂ control

Hg Mercury (Hg 0 = elemental or metallic Hg; Hg $^{2+}$ is oxidized Hg)

NSR New Source Review – requires added controls on any pollutants that

increase due to control for target pollutant

PM Particulate Matter (aka fly ash)

ppb Parts per billion (1 molecule Hg among 1 billion molecules flue gas)

SCR Selective Catalytic Reduction for NOx control

© 2005 Electric Power Research Institute, Inc. All rights reserved

7

RESEARCH INSTITUTE